Extensions 1→N→G→Q→1 with N=C6xF5 and Q=C22

Direct product G=NxQ with N=C6xF5 and Q=C22
dρLabelID
F5xC22xC6120F5xC2^2xC6480,1205

Semidirect products G=N:Q with N=C6xF5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C6xF5):C22 = S3xC22:F5φ: C22/C1C22 ⊆ Out C6xF5608+(C6xF5):C2^2480,1011
(C6xF5):2C22 = C2xD6:F5φ: C22/C2C2 ⊆ Out C6xF5120(C6xF5):2C2^2480,1000
(C6xF5):3C22 = C22xS3xF5φ: C22/C2C2 ⊆ Out C6xF560(C6xF5):3C2^2480,1197
(C6xF5):4C22 = C6xC22:F5φ: C22/C2C2 ⊆ Out C6xF5120(C6xF5):4C2^2480,1059

Non-split extensions G=N.Q with N=C6xF5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C6xF5).1C22 = C4:F5:3S3φ: C22/C1C22 ⊆ Out C6xF51208(C6xF5).1C2^2480,983
(C6xF5).2C22 = Dic6:5F5φ: C22/C1C22 ⊆ Out C6xF51208-(C6xF5).2C2^2480,984
(C6xF5).3C22 = S3xC4:F5φ: C22/C1C22 ⊆ Out C6xF5608(C6xF5).3C2^2480,996
(C6xF5).4C22 = D60:3C4φ: C22/C1C22 ⊆ Out C6xF5608+(C6xF5).4C2^2480,997
(C6xF5).5C22 = C22:F5.S3φ: C22/C1C22 ⊆ Out C6xF51208-(C6xF5).5C2^2480,999
(C6xF5).6C22 = C3:D4:F5φ: C22/C1C22 ⊆ Out C6xF5608(C6xF5).6C2^2480,1012
(C6xF5).7C22 = F5xDic6φ: C22/C2C2 ⊆ Out C6xF51208-(C6xF5).7C2^2480,982
(C6xF5).8C22 = (C4xS3):F5φ: C22/C2C2 ⊆ Out C6xF51208(C6xF5).8C2^2480,985
(C6xF5).9C22 = C4xS3xF5φ: C22/C2C2 ⊆ Out C6xF5608(C6xF5).9C2^2480,994
(C6xF5).10C22 = F5xD12φ: C22/C2C2 ⊆ Out C6xF5608+(C6xF5).10C2^2480,995
(C6xF5).11C22 = C2xDic3xF5φ: C22/C2C2 ⊆ Out C6xF5120(C6xF5).11C2^2480,998
(C6xF5).12C22 = C2xDic3:F5φ: C22/C2C2 ⊆ Out C6xF5120(C6xF5).12C2^2480,1001
(C6xF5).13C22 = F5xC3:D4φ: C22/C2C2 ⊆ Out C6xF5608(C6xF5).13C2^2480,1010
(C6xF5).14C22 = C6xC4:F5φ: C22/C2C2 ⊆ Out C6xF5120(C6xF5).14C2^2480,1051
(C6xF5).15C22 = C3xD10.C23φ: C22/C2C2 ⊆ Out C6xF51204(C6xF5).15C2^2480,1052
(C6xF5).16C22 = F5xC2xC12φ: trivial image120(C6xF5).16C2^2480,1050
(C6xF5).17C22 = C3xD4xF5φ: trivial image608(C6xF5).17C2^2480,1054
(C6xF5).18C22 = C3xQ8xF5φ: trivial image1208(C6xF5).18C2^2480,1056

׿
x
:
Z
F
o
wr
Q
<